MOD Based YBCO Films DoE Wire Workshop January 21, 2003

REVOLUTIONIZING THE WAY THE WORLD USES ELECTRICITY™

AMSC Approach to High Ic YBCO Films

- Metal-Organic-Deposition of YBCO on bi-axially textured templates
 - MOD process is applicable to all template technologies
 - YBCO performance of 200A/cm-width (2.2 MA/cm²) achieved on both RABiTS™ and IBAD substrates (77K, sf)
 - Major focus is RABiTSTM
 - MOD process is scalable to long length, continuous processing
 - 10 meter tapes routinely processed on RABiTS[™] templates
 - Critical currents of ~130A/cm-width over length (77K, sf)
 - MOD process is compatible with high rate low-cost (\$10/kA-m) manufacturing

The MOD Process for YBCO Films

Metal Organic Precursor deposited on buffered substrate by conventional web coating technology

Decomposed precursor film

Substrate/buffer

Reel-to-reel thermal Decomposition of precursor to a "Y₂O₃-BaF₂-CuO" film

YBCO film

Substrate/buffer

"Y₂O₃-BaF₂-CuO" film converted to YBCO in reel-to-reel system

All processes are are developed for highrate, low-cost manufacturing

Current Performance of MOD-based YBCO

- Performance on CeO₂/YSZ (single crystal)
 - 4 MA/cm² at 0.8 μm YBCO
- Performance on CeO₂/YSZ/Y₂O₃/NiW
 - 2.2 MA/cm² (200 A/cm-w) @ 0.9 μm on short samples
 - 1.5 MA/cm² (135 A/cm-w) @ 0.8 μm on continuous (1 10 meter) tapes
 - Baseline process for 10 meter lengths

Performance comparable to best PLD films

MOD YBCO Performance Continues to Improve

Thickness has minimal effect on Jc

MOD Process Scales to Length

Critical current of the 7.5 and 8.0 m long YBCO superconducting tapes measured at 77 K, self field. Statistical data is from measurements taken at 50 cm intervals

Uniformity over length demonstrates viability of continuous MOD processing

What Limits Performance of MOD YBCO Films

- IBAD samples produce better in-plane texture
 - IBAD: YBCO: Δφ₁₀₃= 2.5°
 - RABiTS: YBCO: Δφ₁₀₃= 4.6°
- Jc in both samples is 2.2 MA/cm² (77K, sf)

Ag

YBCO

CeO₂ YSZ

YBCO

BaCeO₃

CeO₂

LMO

Jc of MOD YBCO does not reflect difference in texture of templates

GB Faceting 1 to Surface

- $I_C = 173 \text{ A/cm-w } (77\text{K, sf})$
 - 0.9 µm YBCO
- Microstructure of GB
 - Straight GB in substrate and buffer
 - Faceted GB in MOD YBCO

Microstructure of YBCO film important for current path and YBCO properties

Status of MOD Manufacturing Technology

Metal Organic Decomposition Process

- Decomposition time is < 1 hour independent of thickness
- Decomposition is uniform over length and width
 - Original process developed at MIT requires up to 10 hr

YBCO Reaction

- Growth rates > 10Å/sec demonstrated with "BaF₂-type" precursors
- Reaction is uniform over length and width of tape
 - Original process limited to lower growth rates and small samples

MOD process is routinely used for producing 10 meter lengths of high critical current YBCO tape

Manufacturing Issues - MOD Coating

- Major advantage of MOD-based process is the ability to process wide tapes
 - Coating technology widely used in coating industry and is expected to operate at 2 -10 meters/minute on wide webs
 - Process produces uniform coating over both length and width of tape and is stable over time
 - Materials usage is ~ 100%
 - Precursor cost is negligible
 - Coating run limited by substrate length

Manufacturing Issues - Precursor Decomposition

- Thermal decomposition of MOD precursor film to a defect-free "Y₂O₃-BaF₂-CuO" film
 - Films are uniform in thickness over length and width of tape
 - Decomposed film is comparable to e-beam "BaF₂" films
- Entire thermal decomposition is now carried with reel-to-reel process with total time < 1 hour
 - Process produces defect-free films over length and width of substrate
 - Conventional process developed at MIT required times up to 10 hours

A single 10 meter oven produces ~0.25 linear kilometers of web tape each day

A 10 cm wide tape yields 6.25 km of equivalent 4 mm wire each day

Manufacturing Issues - YBCO Reaction

Practical, cost effective manufacturing is achieved with MOD process

- Reel-to-reel process
- High growth rates
- Wide web processing capability
- Complete uniformity over web surface
- Maximized Ic over length

MOD Processing Achieves all Requirements

